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EFFECT OF SHEAR LAG ON BENDING VIBRATION
OF BOX BEAMS

By Roger A. Anderson and John C. Houbolt
SUMMARY

An analytical investigation is made of the effect of shesr lag on
the bending vibration of wings that are designed essentially as shallow
box beams, and a procedure is outlined for incorporating this effect
in the determination of bending modes and frequencies. Numerical
examples show that shear-lag action in & box beam can have a large
influence on 1its vibration characteristics. The calculations indicate
that even though only a small shear-lag action may be observed 1ln a
simple static deflection test of the beam, reductions in the second and
higher-mode freguencies msy be relatively large.

INTRODUCTION

Vibration tests of airplane wings have shown that discrepancies often
exlst between observed and calculated natural frequencies of wings. Among
the possible sources of these discrepancies are aerodynamic and structural
damping, rotary inertia, shearing deflections, and shear-lag effects, all
of which are neglected in the usuval englineering theory for beam vibration.
The present paper investigates briefly the shear-leg effects. The shear-
lag theory upon which this paper is based 1s presented in references 1
and 2.

The strength element of many wings is essentially a shallow box
beam in which the secondary strains arlsing from shear lag sometimes have
a significant influence on the bending stiffness, which in turn affects
the vibration characteristics of the wing. That the natural frequencies
of wings can be apprecliably reduced when shear lag is present is shown
by the included numericel examples. A slmple procedure is outlined for
incorporating the effects of shear lag on bending stiffness in the determi-
natlon of bending modes and frequencies. Although not presented here, a
similar procedure can be used to incorporate the effect of the so-called
bending stresses due to torsion on the torsional modes and frequencies
of box beeams.
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SYMBOLS

length of beam

Young's modulus of elasticity

effective shear modulus of cover sheet of box beam

bending moment of inertia of beam cross section

mess of beem per unit length

equivalent loading used in numerical integration

total shear force

bending moment

deflection of nth mode of vibration after 1 iterations for
both derived values of deflection and for values written in
terms of unit tip deflection

stations along beam

circular frequency of nth natural mode of vibratlion, radians
per second

frequency of nth naturael mode of vibration, cycles per second

number of equal-length bays into which beam is divided for the
shear-lag and vibration analysis

distance between stations dividing box beam into bays

statically indeterminate forces in corner flanges at each
station due to shear lag

radius of curvature of elastic axis at each station due to
shear-lag strain 1n one cover of box beam

parameters used in shear-lag analysis

area of corner angle or flange plus one-sixth the area of
vertical shear webd

area of longitudinals and effective sheet material over one-hal
the width of box (See reference 1.)
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b wildth from center line of section to centrold of cormner flange
h depth between centrolids of top and bottom flanges
t average thilckness of cover sheet

MEANING OF SHEAR LAG

Before an attempt 1is made to describe the effect of shear lag on
the vibration of heams, a brief explanation of the term 'shear 1ag" will
be given. In figure 1 the tensile-stress distribution at two locations
_1s shown for a simple sheet-stringer panel under a given loading. In
the region near the load, the tenslile stress is large at the edges where
the load 1s applied, but in regions remote from the load the tensile
-8tress tends to become more uniformly distributed over the width of the
panel because of the shearing stresses which also exist in the structure.
If these shearing stresses caused no shearing deformation of the sheet
in the panel, the tensile-stress distribution would necessarily be
uniform at &1l points instead of varying as shown in figure 1. Shear lag

is the term commonly used to describe the influence that shearing deformations .

have on the stress distribution.

The extent to which shear lag occurs in a structure is a function of
the geometry of the structure and of the loading. In the elementary
bending theory of beams, the influence of shearing deformations on the
stress distribution 1is neglected because shearing deformations are generally
smaell. In box besms of certain proportions, however, the shearing
deformations cannot be ignored if the stresses and deflection are to be
rredicted accurately. A typical bendlng-stress varlatlon over the cover
sheet in the vicinity of the root of a cantilever box beam is shown in
figure 2. Instead of a uniform longitudinal stress across the section,
as would be predicted by elementary bending theory which considers the
thin cover sheet infinitely stiff in shear, the longitudinal stresses are
increased near the sdges and are decreased at the center of the beam.
This change in stress distribution causes a change in the beam deflection.
If cut-outs or certain load concentrations were present, similsr shear-
lag effects would occur. The deformation of wing structures, including
the effect of shear lag, is discussed in reference 2.

EFFECTS OF SHEAR LAG ON VIBRATION

Beam deflections are usually considered to be a function of the
loading, the menner of support, and the besm stiffness which is calculated
from the geometry of the cross sections and the modulus of elasticity of
the materiel. The stiffness of box beams, however, is also iInfluenced by
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shearing deformation of the thin cover sheets. For beams in which this
shearing deformation is appreciasble, the increases in stress and,
consequently, in strain in the corner flanges result in larger deflections
for the beam as a whole than would be predicted by elementary beam theory.
Such beams ere essentially less stiff than similar beems (same EI variation)
without shear lag. In problems dealing with shear-lag beams, therefore,
the usual concept of beam stiffness must be replaced by an effective
stiffness concept, which takes into account the shear-lag stralns present.
With such a concept, the effective stiffness is a function of the beam
loading, since the smount and distribution of the shear-lag strains along
the beam vary for each different losding condition.

Under the inertia loads occurring in vibration, the effective stiffness
often differs appreciably from the geometricel stiffness. Since the stiffness
cheracteristics of the beam change the vibrastion characteristics also
change. Thus, shear-lag effects cannot be neglected in the determination
of the bending modes and fregquencles of some box beams.

ANALYTTCAL PROCEDURE FOR INCLUDING SHEAR-LAG EFFECTS
IN THE DETERMINATION OF NATURAL MODES

AND FREQUERCIES OF WINGS

When bending modes and freguencies of beams are determined by the
iteration procedure glven in reference 3, the vertical shear forces and
bending moments in the beam are found by direct integration of an inertia

loading, m(x)Y(o)(x), where Y(0)(x) 1is the assumed deflection. The
bending moments are converted into curvature by dividing by the stiffness EI;
the slope and deflection are then found by integration of the curvature.

This process 1s repeated, the newly-found deflection being used to compute

the inertia loading for the next iteration, .until two successively computed
deflections bear a constant_ratio to each other. This ratio is the square

of the natural frequency w-~.

For a box beam with sheer lag, the process is essentlally the same
except that the curvature camnot be found simply by dividing the bending-
moment variation by the "geometrical" stiffness varliation along the beam.

To the basic é%-curvature, & correction must be applied which takes intp

account the additional curvature caused by the secondary stfﬁins in the
" corner flanges due to shear lag. The addition of this curvature correction

to the basle é%-curvature is simply the process of properly teking inte

account the effective reduction in stiffness of the beam. The resulting
total curvature would be the same as if the bending moment had been divided

.
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by the effective stiffness. Since the stiffness term EI that appears

in the differential equation of vibration for a beam is the stiffness

that governs the curvature, the analysis of reference 3 still applies to
the beams considered herein. In reference 3 the geometrical stiffness EI
computed from the geocmetry of the cross sections of the beam was used,
whereas in the present paper an effective stiffness which incorporates the
effect of shear lag 1s used.

An outline of the procedure used in this paper to determine the
shear-lag curvature corrections will bde given to clarify the numerical
examples which are presented. The procedure is an adaptatlion of the more
general shear-lag analysis presented in references 1 and 2. For & doubly
symmetrical box beam, the steps are as follows:

(1) pivide the box into J equal beys. (See fig. 3.) For each
bay, determine the constants AF, Ar,, b, h, and t for the simplified

cross section (fig. 4), as used in the shear-lag analysis presented in
reference 1.

(2) From these simplified cross sections, campute the following

shear-lag parameters:
2
Eb \&r A

b —K
t temh KA

X
g = —=—
t sinh Kn
1 Sh1,

7=3
2ht@F+AL>

(In reference 1, p, q, and 7> are defined with a factor "G in the
denominator; but, since G 1is a constant that can be factored from the
equations given in step (4), the factor is omitted in these formulas.)

(?) From an assumed inertias loadlng mI(O) on the beem in the first
iteration of the vibration analysis compute the average vertical shear
force existing in the webs in each bay (one-half the total vertical
shear for & given bay).
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(4) From the average vertical shear in the webs of each bay compute
the self-equilibrated groups of X-forces at each statien. They are
defined by the equations from reference 1

~

Xy - X1 @a +2y1) + Xgepdyl =TTyt 73
X3-193-1 " %52 @J-l * Pa-aD *Xy-39-2 = Yg-L * 75-2
> (1)
%93 - XoRy =N J

The subscripts on the X-forces refer to the stations and the subscripts
on the paremeters p, q, &and 7 refer to the bays as they are numbered

in figure 3.

(5) Compute the curvature correction at eech station from the
X-forces by the relation

X

= Eagh (2)

o b

where Ap and h &are computed at the station points. Equation (2)
glves the correction due to shesr lag in one cover.

(6) To the é%-curvature at each station computed in the vibration

analysis, add the shear-leg curvature correction for both covers. Complete
the remaining steps of an iteration.

New curvature corrections should be computed in each succeeding
iteration; but if the inertia loading computed from the assumed deflection
in the first lteration is reasonsbly representative of the true loading,
the curvature corrections computed from this loading are accurate enough
in most cases. Furthermore, precise computations are not 'Justified because
the accuracy of the shear-lag theory for loadings of the type that occur
in vibration is unknown. In those cases for which curvature corrections
are computed from assumed deflections differing widely from the derived
shape, however, a second set of curvature corrections mey improve the
accuracy of the derived mode and frequency.
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NUMERICAL EXAMPLES

In order to show the effect of shear leg on bending vibration,
frequency end mode calculations have been performed for the two uniform
box beems shown in figures 5 and 6. Beem A (fig. 5) was designed to
show only & small amount of shear-lag action in static loading as shown
by the fact that under a concentrated tip load the calculated tip
deflection of this beam is only two percent greater by shear-lag theory
than by ordinary beem theory. Beam B (fig. 6) was designed to show an
exaggerated shear-lag action in static loading tests. Under a concentrated
tip load, the calculated lncrease in tip deflection due to shear lag in
this beam 1s about 19 percent. The following table gives a comparison
of same of the natural bending frequencies of the two beams camputed
both with and without taking shear lag into account:

¥Frequency
Beam | Mode (cps) z;z;:zt
Shear lag | No shear lag
1 k5.7 46.65 . 2.1
A 2 260 292 12.3
3 6712 817 21.6
B 1 3k.6 43.8 21.0 ]

The celculations indicate that, even though a box beam shows little
shear-lag action under a simple statlic loading (for example, beam A),
appreciable reductions in the second and higher-mode frequencies of vibration
might be expected. For a box beam that shows lerge shear-lag action under
a slmple static loading (for example, beam B), a correspondingly large
reduction in even the fundamental bending frequency might be expected. A
brief discussion of the calculation for each beam is presented in the
following sectlons.

Beanm A

Fundamentel mode.- The procedure followed in the determination of
the fundemental mode end frequency is indicated in the upper half of table 1.
The first iteration is shown in detail and each step follows closely the
equivelent-load method shown in table 1 of reference 3, except for the
insertion of the shear-lag curvature corrections (column 7), which are

added to the %—curvatures in column 8. (The mass per unit length m 1is
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carried as a common factor in each column because it 1s constant over the
length of the beam.) The shear-lag curvature corrections are calculated
from the X-forces which are defined by the system of equations in the

lower helf of the table. The shear data in column 4 are used to compute
the values of the parameter 7, which form the constant terms in the
equetions (equations (1)). The coefficients of the X-forces are determined
from the shear-lag paremeters p and gq. The X~-forces are solved for

from this system of equations. The curvature corrections E/R are then
calculated fram these X-forces by the use of the equation shown in the
table. (12/m>~2 is a factor used to convert the curvature corrections to

the same units as the -%—curvature end the factor 2 takes care of the

correction for both covers of the symmetrical box beam.) The curvature
corrections are then inserted in the iteration procedure (column T).

The fundamental mode, as determined from one more iteration, 1s
listed in column 15. Shear lag has little effect on the shape of the
fundamental mode, as shown in figure T(&). The freguency of vibration
with shear leg taken into account is computed in the teble. If no shear
lag were present, the fundemental frequency of this beam would be the
seme as that for a uniform cantilever, or

w? = 3528 H

B,

= 85,700 (radiens/sec)?

Second and third modes.- The procedure for finding the second and
third modes and frequencles is the same as that given for higher-mode
determination in reference 3 except for the shear-lag curvature corrections,
which ere introduced in the same menner as illustrated for the flrst
mode in teble 1. The computations show that shear lag accounted for about 39
and 47 percent of the total curvature at the root station of the beem in
the second and third modes of vibration, respectively. The curvature at
the other stations was affected to a lesser but still significant extent.
The effect of these curvature corrections on mode shape is illustrated
in figure 7. It is evident that conclusions regarding the frequency
change associated with these mode shapes cannot readily be drawn from
comparison of the deflections alone because the curveture differences in
the mode shapes, which also influence the fregquency, are hidden.

-
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Beam B .

The length-width ratio, as well as the AF/A; ratio, for beem B
is considerably smeller than that for beam A and, as might be expected
from the static-loed deflection camparison presented previously for these
two beams, a more pronounced shear-leg action was noticed for beam B
in the fundementel-mode caslculations. The calculations showed that shear~
lag action accounted for about 48 percent of the total root curvature.
The resulting sizesble reduction in frequency (21 percent) would not be
expected in a box beam of ordinary design, but this reduction does
indicate that the effect of shear lag can be apprecisble even on the
fundamental mode of vibration.

CONCLUDING DISCUSSION

The investigation has shown thet, even though the shear lag in &
given box beam had & relatively insignificeant effect on the static
deflection of the beem under & tip load and on the fundemental frequency
of vibration, 1t ceused an apprecieble reduction in the higher frequenciles.
This Increasing effect of shear lag on the higher modes can be explainsd
by the fact that the relatively greater rates of chenge of the bending
moment over the span in these modes of vibration are accampanied by
increased shear deformation of the cover sheets and result in a reduced
flexural stiffness of the beam. It has been pointed out that shearing
deformations in the thin cover sheets effectively change the stiffness,
and hence the vibration characteristics, of the besam.

Shear deformation of the cover elso takes place around discontinuitles
and abrupt changes in cross sections, such as cut-outs, and around points
of load concentration. In an actual wing, shear-lag effects due to these
disturbances may be of more importance than the simple effect treated imn
this paper and should therefore be lnvestigated when a determination of
the modes and frequencies is being made. The analyticel procedure for
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introducing shear-lag corrections for more complicated structures differs
little from the procedure presented hereln.

Langley Memorisl Aercnautical Laboratory
National Advisory Commlttee for Aeronautics
Langley Field, Va., February 2, 1948
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TARIE I

THEE IETEEMINATICN OF THE FUADAMENTAL MOIE AND FREQUERCY CF B(OX BEAM A

INCLUDING THE EFFECTS OF SEEAR LAG

11

X = 10,500,000 pei} G = %,000,000 pai; L =75 In.} % = 7.5 in.; I =132 in.% =« c.00063 :'——:':’:
Fundementel mode and frequency camputations
1 2 3 3 [ T 8 [ 10 1 12 13 1k 15
statten | T(0) | p s /I 2 | WDere] WDy | Slope | | xf0) | p@ ?1? 1,(2)
B A,
Coamson. w2 2 2 2 3 3 0k mk
e * | 2B || B | BB Rk im| |5
a0 1.00 %.67 .67 0 <] -] 150k.7 &8k | 1.000 9232 &,200 | 1.000
9 g 10.10 15.77 5.67 k3 =-0.5T7 -1k -0.k 1205.1 TTTe .865 7953 .868
8 .70 8.42 2k.19 2.k 1.6 - -99 12.7 1192.k & «T32 675% &,200 -732
T 58 6.95 31..0% 45.63 3.48 58 2.90 35-4 1157.0 538 599 5528 -599
€ 45 563 | 2547 | T6-67 5.85 | -7 | s.38 6.0 | 1000.0 | 25 | %70 | M9 | &,200 | k0
5 -35 k.19 %0.66 113.1k 8.8 -.36 a.27 99.6 992.% 3133 .348 326 +3k8
L .2k 2.89 | s u |193.60 1.7L -2 | 1.9 138.2 Ssk.z | ML .238 2196 8,200 .238
3 .1k LT | ss.pe |97-33 | 33.05 | -0k | 1300 180.4 ora.8 | 287 | W3 | 1319 .1430
2 .07 .86 %6.12 252.6 18.%0 -3 18.81 226.% KTk a3 068 a8 8,200 .0680
i 02 .27 46.39 288.73 22.03 1-29 | 23.32 281.9 165.5 166 .016% 18 .0183
o Q 335.12 25.55 %.30 | 29.8 155-5 Q Q -] (]

* o 2 o Lk x 10500000 T2
0.00063 x T-3* 1, (2)

Dl

Q)

Calculations for shemr-lag curvature caTections

valuss are same for each day becauss box beam iIs wuniform)

(g = 0.237 8q 1n-} Ay = 0.320 #q in.; K =0.15T5 D =%-T6 ¢ =2.67; h=k56in} d=9 in; t = 0.040 in.;

Station 73+ 73 Station | XI/R
0 1 g.00328 1o
9 00914 0.00586 9 =0.57
8 . 01400 «00k86 e -8
LEx T . -00%00 T X T --58
TUEL ity D agoo 3'%;;
[ 02110 .00310 6 --kT
= 0.0005798 5 .35 .002k5 = &% 5 --36
k 08520 00065 s -.22
3 .60 +00L00 - 3 --ok
2 02610 00050 2 .31
1 02680 -00010 1 1.29
[¢) --02680 ] %.30
Y | % | x| | n |[n | n | % | u | % ||y o
. ation I
9. 2.67 0.00586 9 -0.00090
2.87 | 9.% 2.61 -00k86 8 -.00102
2.61 | 9.5 2.67 .00h00 7 == 00051
2.671 | -9.% 2.67 .00310 6 -. 0007k
2.61 | -9.% 2.67 .002%5 5 -.00056
2.67 | -9.% 2.67 .0ALES 3 -.00035
2.61 | 9.% 2.67 -00100 3 =.00006
2.67T | -9.%2 2.67 -00050 2 -000k99
2.67 | 9.5 2.67 00010 1 00203
. 2.67 k.76 -.02680 [} <008TT

([
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Figure 1.- Tenslle-stress distribution in a panel with shear
deformation of the sheet.

> o -

Figure 2.- Bending-stress distribution in a cantilevered
box beam. '
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Figure 3.- Notation for bays and stations in shear-lag and
vibration analysis.
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Figure 5.- Box beam A used in numerical examples.
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Figure 6.- Box beam B used in numerical examples.
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Figure 7.- Effect of shear lag on the bending modes of vibration
of a uniform box beam. .



